Kinetics for the Life Sciences - H. Gutfreund 1995-09-14 This book introduces the reader to the kinetic analysis of a wide range of biological processes at the molecular level. It shows that the same approach can be used to resolve the number of steps for a wide range of systems including enzyme reactions, muscle contraction, visual perception, and lipid binding. The author discusses the methods for characterizing these steps in chemical terms. Firmly rooted in theory, a wide range of examples and experimental techniques are introduced as well. A historical perspective is used to demonstrate the development of the theory and experimental techniques of kinetic analysis in biology.

Kinetics for the Life Sciences - H. Gutfreund 1995-09-14 Thermodynamics and Kinetics for the Biological Sciences - Gordon C. Hammes 2000-06-26 Gain a working knowledge of thermodynamics and kinetics with a minimum of mathematics-a guide for individuals in the biological sciences. An understanding of thermodynamics and kinetics is essential for researchers investigating molecular phenomena in diverse disciplines, including biogenic chemistry, medicinal chemistry, biochemistry, pharmacologists, and biologists. The use of these physical chemistry tools in the biological sciences has exploded over the last decade. The Handbook of Biochemical Kinetics introduces the "bad habits" of practitioners of kinetic analysis to distinguish fruitful from blind approaches. The handbook also comments on techniques and their likely pitfalls and pitfalls, as well as derivations of fundamental rate equations that characterize biochemical processes. Chapter 3 deals with the fully quantum mechanical view of reactive states as accessible to current computational techniques. Chapter 4 introduces steady state methods to a thorough account of transient kinetic and rapid reactions, and then on to the new simple molecule techniques - Stephen Smith, University of Bristol. This illustrated treatment explains the methods used for measuring how much a reaction gets sped up, as well as for the framework for solving problems such as lipid binding and macromolecular folding, using the step-step-step approach of numerical integration. It is a thoroughly modern text, reflecting the recent ability to observe reactions at the single-molecule level, as well as advances in microfluidics which have given rise to few component studies. Kinetics is more important now than ever, and this textbook truly helps in understanding the mechanistic action of enzymes, and even the processing of genetic material. The Handbook of Biochemical Kinetics provides the "underlying scaffolding" of logic for kinetic approaches to distinguish rival models or mechanisms. This book is a must-have for biochemists, biophysicists, and especially for medical students and graduate students in biochemistry, chemistry, and life sciences, for advanced courses in enzyme kinetics, understanding of phenomena Includes end of chapter problems, references, and bibliography to reinforce the text.
Biological Kinetics—Lee A. Segel 1991 This book demonstrates how an understanding of biological kinetics can lead to knowledge about the biological model being examined.

Kinetik der Aggregation und Gelation—P. Family 2012-12-02 Kinetik der Aggregation und Gelation presents the proceedings of the International Topical Conference on Kinetik der Aggregation and Gelation held on April 2-4, 1984 in Athens, Georgia. The purpose of the conference was to bring together international experts from a wide variety of backgrounds who are studying phenomena inherently similar to the formation of large clusters by the union of many separate, small elements, to present and exchange ideas on new theories and results of experiments and to compare their results. The book contains four papers that introduce the reader to a recent oral presentation that is part of a unified whole. The book begins with a presentation on fractal concepts in aggregation and gelation processes. In the final chapter, the reader finds a summary of the book in the form of a list of open questions that relate to the theme of the book. The book is divided into six chapters containing material carefully selected and tailored to several groups of biotechnology students. The topics are presented in a manner that allows readers to proceed sequentially to the strength of the preceding material. Primary KABILF for Life Sciences: Guide for Beginners—Leann Burton 2013-11-07 This book provides resources for chemistry students interested in life sciences who wish to learn about the basics of metabolism, genetics, and enzyme kinetics. It begins with a discussion of the fundamental concepts of metabolism and genetics, and then moves on to more advanced topics such as enzyme kinetics and gene expression.

Primary MBAT® for Life Sciences: Guide for Beginners—Leann Burton 2013-11-07 This book provides resources for chemistry students interested in life sciences who wish to learn about the basics of metabolism, genetics, and enzyme kinetics. It begins with a discussion of the fundamental concepts of metabolism and genetics, and then moves on to more advanced topics such as enzyme kinetics and gene expression.

Physical Chemistry for the Life Sciences—Scott J. Pitzer 2013-01-18 This book provides resources for chemistry students interested in life sciences who wish to learn about the basics of metabolism, genetics, and enzyme kinetics. It begins with a discussion of the fundamental concepts of metabolism and genetics, and then moves on to more advanced topics such as enzyme kinetics and gene expression.

Contemporary Enzyme Kinetics and Mechanism—Daniel L. Purich 1983-01-01 This book describes the mechanisms and kinetics of enzyme reactions. It covers the general principles of enzyme kinetics, including the effects of temperature, pH, and substrate concentration, as well as the specific mechanisms of enzymes in various biological systems. The book is divided into three parts: an introduction to enzyme kinetics, a discussion of enzyme mechanisms, and a section on the application of enzymology to the study of biological processes. The introduction provides a general overview of enzyme kinetics and mechanisms, and the discussion of enzyme mechanisms covers a wide range of topics, from the history of enzyme kinetics to the latest developments in the field. The application of enzymology to the study of biological processes includes topics such as the role of enzymes in metabolism, the regulation of enzyme activity, and the use of enzymes in industry.

Current and Emerging Enzyme Kinetics and Mechanism—Daniel L. Purich 2013-01-01 This book describes the mechanisms and kinetics of enzyme reactions. It covers the general principles of enzyme kinetics, including the effects of temperature, pH, and substrate concentration, as well as the specific mechanisms of enzymes in various biological systems. The book is divided into three parts: an introduction to enzyme kinetics, a discussion of enzyme mechanisms, and a section on the application of enzymology to the study of biological processes. The introduction provides a general overview of enzyme kinetics and mechanisms, and the discussion of enzyme mechanisms covers a wide range of topics, from the history of enzyme kinetics to the latest developments in the field. The application of enzymology to the study of biological processes includes topics such as the role of enzymes in metabolism, the regulation of enzyme activity, and the use of enzymes in industry.
and develop new processes. Presents new techniques and technologies for the development of three-dimensional structures such as quantum dots, nano-wires, rods and patterned growth. Introduces and utilizes basic concepts of thermodynamics, transport, and a wide cross-section of kinetic processes which form the atomic level text of growth process Volume III Materials, Processes, and Technology. Describes atomic level epitaxial deposition and other low temperature growth techniques. Presents both the development of thermal and lattice mismatched streams as the techniques used to characterize the structural properties of these materials. Presents in-depth discussion of the epitaxial growth techniques associated with silicon, silicon-based materials, compound semiconductors, semiconducting nitrides, and refractory materials.

Physical Kinetics - L. Pitaevskii 2012-12-02 This volume is mainly concerned with a systematic development of the theory of plasmas, the authority being firmly rooted in the pioneering work of Landau. Corresponding results are also given for partially ionized plasmas, relativistic plasmas, degenerate or non-ideal plasmas, and solid state plasmas.

Physical Chemistry for the Biological Sciences - Gordon G. Hammes 2015-04-10 This book provides an introduction to physical chemistry that is directed toward applications to the biological sciences. Advanced mathematics is not required. This book can be used for either a one semester or two semester course, and as a reference volume by students and faculty in the biological sciences.

Reaction Kinetics and the Development and Operation of Catalytic Processes - G.F. Froment 2001-04-03 Reaction kinetics and the development and operation of catalytic processes is a trendsetter. The keynote lectures are authored by top scientists and cover a broad range of topics like fundamental aspects of surface chemistry, in particular dynamics and spillover; the modeling of reaction mechanisms, with special focus on the importance of transient experimentation and the application of kinetics in reactor design. Fundamental and applied kinetic studies are well represented. More than half of these deal with transient kinetics. A new trend made possible by recent sophisticated experimental equipment and the awareness that transient experimentation provides more information and insight to microphenomena occurring on the catalyst surface than steady state techniques. The trend is not limited to purely kinetic studies since the great majority of the papers dealing with reactors also focus on transients and even deliberate transient operation. It is to be expected that this trend will continue and amplify as the community becomes more aware of the predictive potential of fundamental kinetics when combined with detailed realistic modeling of the reactor operation.